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Derivation of analytical formula for the misfit derivative

For simplicity we assume a line fault. The j-th component of synthetic seismogram uj(xi, t)
at receiver xi can be expressed using the representation theorem (Aki and Richards, 2002),

uj(xi, t) = W

∫ T

0

∫ L

0

H(xi; ξ, t − τ)s(ξ, τ)dξdτ (1)

where s(ξ, t) describes the slip velocity evolution with time t and along the fault position ξ.
The fault length and width are denoted L and W , respectively. H(xi; ξ, t) is the impulse
response due to a double couple source located at the fault in a generally inhomogeneous
medium evaluated for the given receiver at xi. We seek slip velocity s(ξ, t) without any
parameterizations of its spatial-temporal distribution (e.g., by imposing a shape of the slip
function, rise time, rupture time, etc.), thus the name ”non-parametric inversion”.

We define misfit as an L2 norm between synthetic, uj(xi, t), and observed seismograms
uobs

j (xi, t), with an additional stabilizing constraint on the scalar seismic moment M0fix fixed
from the previous centroid analysis,

Λ =
1

2Lu

∫ T

0

∑

i,j

[

uj(xi, t) − uobs
j (xi, t)

]2

dt −
1

2M2

0fix

[M0 − M0fix]2 (2)

where the summations are over stations (i) and components (j), M0 represents scalar seismic
moment corresponding to s(ξ, t) and Lu is the L2 norm of the observed data.

The best fitting model can be found by minimization of the misfit, which can be ap-
proached in many ways. Due to the large number of model parameters (in principle an
infinite number because the slip is a continuous function of fault position and time), we adopt
a technique analogous to time-reverse methods used typically in the adjoint seismic tomogra-
phy studies (Tromp et al., 2005, Fichtner et al., 2006). In such methods, gradient of the misfit
with respect to the model parameters is analytically derived and then used in minimization
procedure based on, e.g., conjugate gradient techniques.

Realizing that the misfit (2) is a function of model parameters s(ξ, t) via functionals
uj(xi, t) and M0, we can write the Fréchet differential of Λ (i.e. infinitesimal change of misfit
due to infinitesimal changes of the slip model, Ds(ξ, t)),

DΛ =
1

Lu

∫ T

0

∑

i,j

[

uj(xi, t) − uobs
j (xi, t)

]

Duj(xi, t)dt −
1

M2

0fix

[M0 − M0fix]DM0 (3)

Duj(xi, t) =

∫ T

0

∫ L

0

H(xi; ξ, t − τ)Ds(ξ, τ)dξdτ (4)

DM0 =

∫ T

0

∫ L

0

µWDs(ξ, τ)dξdτ (5)
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Symbol µ represents the rigidity. Inserting (4) and (5) into (3) and realizing that the inte-
gration over t represents a convolution with time-reversed impulse response H, yields

DΛ =

∫ T

0

∫ L

0

(

1

Lu

∑

i,j

H(xi; ξ,−τ) ?
[

uj(xi, τ) − uobs
j (xi, τ)

]

−

1

M2

0fix

[M0 − M0fix] µW

)

Ds(ξ, τ)dξdτ. (6)

In equations (6) we can rename τ to t, obtaining equation (2) from the main article,

DΛ =

∫ T

0

∫ L

0

(

1

Lu

∑

i,j

H(xi; ξ,−t) ?
[

uj(xi, t) − uobs
j (xi, t)

]

−

1

M2

0fix

[M0 − M0fix] µW

)

Ds(ξ, t)dξdt. (7)

Assuming the slip function is non-negative, we substitute Ds(ξ, t) = s(ξ, t)D ln s(ξ, t),
where D ln s represents relative changes of the slip function. Equation (7) is then modified to

DΛ =

∫ T

0

∫ L

0

(

1

Lu

∑

i,j

H(xi; ξ,−t) ?
[

uj(xi, t) − uobs
j (xi, t)

]

−

1

M2

0fix

[M0 − M0fix] µW

)

s(ξ, t)D ln s(ξ, t)dξdt (8)

Note that the latter step introduces an implicit positivity constraint on the slip function.
The above mentioned formulation has been derived for a line fault model. Let us emphasize

that generalization to a 2D fault model is straightforward. The line fault approximation was
assumed in our particular application to the Movri Mountain earthquake as tests on both real
data and synthetics showed almost no sensitivity to the source depth.

Numerical implementation

For numerical reasons s(ξ, t) has to be expressed using some basis functions. Perhaps the
simplest choice is to consider piece-wise constant functions with steps ∆ξ and ∆t in space
and time, respectively. This leads to discretization of the integrals in equation (8),

DΛ =
∑

k,l

KklD ln s(ξk, tl)

Kkl =

(

1

Lu

∑

i,j

H(xi; ξk,−tl) ?
[

uj(xi, tl) − uobs
j (xi, tl)

]

−

1

M2

0fix

[M0 − M0fix]µW

)

s(ξk, tl)∆ξ∆t (9)

where summation over k and l is over spatial and time samples, respectively; s(ξk, tl) are the
amplitudes of the discretized slip function and Kkl represents the corresponding gradient of
the misfit function in the model parameter. With Kkl at hand one can utilize, e.g., the con-
jugate gradient method (Press et al, 1992) to minimize misfit (2) with the implicit positivity
constraint.
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Synthetic test

To test our slip inversion approach, we created a synthetic forward source model (see Figure
A1a) that resembles the results obtained for the Movri Mountain earthquake. The delayed
asperity is incorporated. The synthetic seismograms have been then inverted (assuming the
same stations and frequency range).

The individual iterations are presented in Figure A1b. The inversion performs similarly as
in the real case, see Figure 2a in the main text. The first iterations reveal the main direction
of the rupture propagation. Starting with the 6th iteration the slip patch in the middle of the
fault splits. The other iterations only slightly change the resulting model, which corresponds
to only minor changes in the variance reduction. The slip models correctly reveal the three
major slip segments, including the delayed asperity. The only less well reproduced feature
is the partial rupture propagation to the south-west (left part of the figures). Furthermore,
Figure A1c shows comparison between the input and the inverted source models in terms of
the moment rate (left) and the distribution of moment release on the fault (right). The fit is
relatively good, correctly tracing the main episodes in time and spatial domains.
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Figure A1. Synthetic test of the inversion method. a) Input source model to be inverted.
b) Iterations of the slip inversion. The inscribed numbers represent the number of iteration
and the corresponding variance reduction. c) Comparison between the input (green) and
the inverted (red) rupture models in terms of the moment rate (left) and the distribution of
moment release on the fault (right).
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Additional figures

Figure A2. Distribution of stations used in the present study. Symbols refer to the station
network: ITSAK (squares), NOA (circle), PSLNET (triangles). Main tectonic lines of the
western Greece are displayed.
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Figure A3. Matching data with synthetics. Near regional waveforms up to 0.2 Hz (dis-
placement in millimeters), plotted in black, are compared with synthetic seismograms for
three iterations, 0 (green), 1 (blue) and 26 (red). The station codes appear at left, see also
Figure A2.
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Figure A4. Same as Figure A3, only the observed waveforms (black) are compared with
synthetic seismograms for the CMT solution (green) and the 26th iteration of the slip inversion
(red). Note especially the better fit of the duration of dominant pulses for the distributed
slip model.
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