3-D P-wave Velocity Structure in Western Greece Determined from Tomography Using Earthquake Data Recorded at the University of Patras Seismic Network (PATNET)

N. S. Melis ${ }^{1,2}$ and G.-A. Tselentis ${ }^{1}$

Abstract

The 3-D P-wave velocity structure of the upper crust in the region of western Greece is investigated by inversion of about 1500 residuals of P-wave arrival times from local earthquake data recorded in the year 1996 by the newly established University of Patras Seismic Network (PATNET). The resulting velocity structure shows strong horizontal variations due to the complicated structure and the variation of crustal thickness. Relatively low-velocity contours are observed in the area defined by Cephallonia-Zakynthos Islands and northwestern Peloponnesos. This is in addition to some well localized peaks of relatively higher values of P-wave velocity may be related to the zone of Triassic evaporites in the region and correspond to diapirism that breaks through to the uppermost layer. Finally, a low P-velocity 'deeping' zone extending from Zakynthos to the Gulf of Patras is correlated with Bouguer anomaly map and onshore and offshore borehole drillings which indicate that thick sediments overly the evaporites which exist there at depth greater than 2 km .

Key words: Seismic tomography, W. Greece, microearthquake networks.

1. Introduction

The western portion of Greece is the most seismically active area in that country and is characterized by extensive and complex deformation (Fig. 1). The tectonic features that dominate western Greece are: subduction of the African plate beneath the Aegean microplate along the western Hellenic trench (Le Pichon and AngeLier, 1979, 1981; McKenzie, 1972, 1978; Mercier et al., 1972, 1976, 1987; Hatzfeld et al., 1990), the Cephallonia transfer fault at the northwestern end of the Hellenic arc (Anderson and Jackson, 1987; Finneti, 1976, 1982; Underhill, 1988, 1989), the Adriatic collision which follows to the NW as the Apulia microplate converges with the Aegean (Anderson, 1987; Anderson and Jackson, 1987; Hatzfeld et al., 1995), and finally the $\mathrm{N}-\mathrm{S}$ extension which is the main characteristic of the approximately E-W trending grabens (Brooks et al., 1988;

[^0]Melis et al., 1989, 1995) which forms the inner part of the Hellenic arc (i.e., Trikhonis Lake, Gulf of Patras, Gulf of Corinth, Pyrgos Basin). Diapirism has been observed offshore in the Zakynthos-Cephallonia channels along the lines of reverse faulting, justifying even more the $\mathrm{E}-\mathrm{W}$ compression which takes place in the area (Brooks and Ferentinos, 1984; Underhill, 1988). Thus, in general, the area of western Greece is characterized by variations in the tectonic regime which should result in complicated structures.

In the present study, the 3-D P-wave velocity structure of the area which covers the Ionian Islands of Cephallonia-Zakynthos to the west, the western Peloponnesos to the east and the Gulf of Patras to the north is investigated (Fig. 1). Figure 2 presents the epicentral distribution of seismicity recorded by the University of Patras Seismic Network (PATNET) in 1996. The best constrained events from this local earthquake data set are used in a seismic tomography inversion that results in a 3-D P-wave velocity model for the region.

2. The University of Patras Seismic Network (PATNET)

The University of Patras Seismic Network (PATNET) covers all of western Greece (Fig. 3). It commenced operation in the summer of 1991 with six stations around the Gulf of Patras and since the winter of 1995 it has consisted of sixteen outstations and a base station (station coordinates are shown in Table 1). Further expansion of the network is currently under implementation with another eight outstations to be installed by the end of 1997 (Fig. 3). Each outstation is deployed with one vertical component short-period (1 Hz) S-13 seismometer operating in a low-noise environment. Signals are amplified to 60 dB and filtered with a 0.2 Hz high-pass and a 50 Hz low-pass analogue filter. Thereafter, they are radiolinked using FM subcarriers to the central recording site at the Seismology Laboratory of the University of Patras (base station), where a three-component (3 S-13: one vertical and two horizontals N-S/E-W) seismometer station is deployed. There, the signal of each channel is antialias filtered with a 200 Hz Butterworth analogue low-pass filter and it is then converted to digital form sampled at 100 Hz with a 16-bit resolution A/D converter. The standard STA/LTA technique is employed for event triggering. All recorded events are then processed and located according to the following procedure.

For the initial phase picking and data processing, SISMWIN (Tselentis et al., 1994), program developed in-house is used. SISMWIN employs features that are particularly convenient for arrival picking, zooming and noise reduction (i.e., in general filtering of velocity seismogram using user-defined band-pass filters, production of instrument and noise corrected deconvolved displacement seismogram, etc.). Thus, for seismograms with a S / N ratio greater than $5, P$ - and S-wave arrival times are read with an accuracy of approximately 0.02 s and 0.07 s , respectively.

For the event location and magnitude calculation, the HYPO71PC program (Lee and Lahr, 1975; Lee and Valdes, 1985) is used. The 1-D velocity model for locating the events is that proposed by Tselentis et al. (1994) and is used in

Major tectonic features in Western Greece (after Brooks et al., 1988; LePichon and Angelier, 1979, 1981; Mercier et al., 1972, 1976, 1987; Hatzfeld et al., 1990). The box indicates the study area.

Depth(km)				
(1)				<5
	5	\leq	AND	<20
	20			

Figure 2
Epicentral distribution of seismicity recorded by PATNET during 1996.
PATNET on a routine basis (Table 2). The magnitude reported for all the events is the local duration magnitude M_{L}, calculated from total signal duration following Lee et al. (1972), applying the equation (after Kiratzi and Papazachos, 1985; Tselentis et al., 1994)

$$
M_{L}=2.32 \log (T)+0.0013 D+C
$$

where T is the signal duration in seconds, D is the epicentral distance in km and C a constant, different for each station.

3. Simultaneous Inversion Method

The tomographic inversion method used in the present study is the one developed by Thurber $(1981,1983)$ for the iterative simultaneous inversion of P-wave arrival-time data for a 3-D crustal velocity structure and hypocentral parameters.The program used was adapted by Eberhart-Phillips $(1989,1990)$ to
include the inversion of S-wave data. Thus, P - and S-wave arrival times can be inverted independently to produce P - and S-wave velocity models of the upper crust. In this study only P-wave arrival-time data were used as PATNET is deployed with only single vertical component seismometers and the S-wave arrival times were not accepted as sufficient enough to be used in the present case of inversion (see section on data selection to follow).

Generally the method used comprises the following features:

1) parameter separation (PAVLIS and Booker, 1980), which operates on the matrix of hypocentral and velocity partial derivatives which enable the separation of the velocity and hypocentral calculations into equivalent subsets of equations which are computationally manageable.
2) the approximate ray-tracing method (ART), which requires little computational time to permit an iterative solution to the problem (ThURBER, 1983). It

Present station distribution of the University of Patras Seismic Network (PATNET).

Table 1
PATNET Station details

No.	St. Id.	Lat. $\left({ }^{\circ} \mathrm{N}-{ }^{\prime}\right)$	Lon. $\left({ }^{\circ} \mathrm{E}-{ }^{\prime}\right)$	Altit. (m)
1	UNI	3817.35	2147.32	70
2	NAF	3825.00	2151.57	280
3	BAR	3821.10	2136.45	340
4	PAP	3811.38	2124.81	196
5	AKA	3848.50	2059.02	1440
6	ZAK	3743.58	2049.51	200
7	KEF	386.60	2047.30	507
8	FIL	378.81	2137.20	340
9	VOL	3753.22	2040.72	450
10	VUN	3744.47	2123.59	240
11	GUM	3745.35	2137.19	367
12	NEO	3754.43	219.55	100
13	DER	38	6.09	2224.55
14	LOU	3759.42	2258.50	410
15	KAI	3731.55	2135.65	300
16	DOD	3929.01	2042.03	10
17	PRG	3919.35	2021.41	760

constructs a set of smooth curves connecting the earthquake 'source' and the 'receiver' station, and numerically calculates the travel time along each curve. Arcs of varying radii are examined and the dip of the plane containing the arcs is varied systematically. An approximation to the true ray path is selected as being that with the shortest travel time. For paths which are fairly short ($<50 \mathrm{~km}$) the travel time estimated by this method agrees well with the 'true' ray path travel time calculated using a 3-D ray tracer. Hypothetical models tested to date give a standard deviation of 0.02 s (ThURBER, 1983). This method is however limited in that the path curvature is constant along a given curve and that each curve lies within a single plane. Pseudobending is used to perturb the 'ART' ray path to satisfy the criteria that the direction of the true ray path curvature is antiparallel to the component of the local velocity gradient normal to the path at each point. This enables a given ray to have varying curvature and to deviate from a single plane (THURBER, 1983).

Table 2
V_{p} crustal velocity model used for 1-D earthquake location

Velocity $(\mathrm{km} / \mathrm{sec})$	Depth (km)
5.7	0.0
6.0	5.0
6.4	18.0
7.9	39.0

Table 3
Hypocentral details of the 168 selected events

Date	Origin	Lat. N	Long. E	Depth	Mag.
960106	64118.15	38-14.43	21-43.45	18.40	2.94
960110	17948.30	38-8.56	21-43.69	17.56	2.90
960123	101039.41	38-23.36	21-51.67	10.55	2.97
960128	21632.68	38-22.83	21-46.34	7.10	3.19
960308	224537.64	38-29.04	21-44.67	11.58	3.24
960310	174559.04	38-4.02	21-53.88	18.35	3.02
960317	63818.34	38-18.95	21-5.62	23.08	4.15
960322	4041.35	38-18.32	21-59.58	7.20	3.83
960326	13435.86	38-22.33	21-51.67	4.86	3.24
960406	85636.56	38-40.97	21-16.08	20.46	3.96
960423	172146.38	38-46.05	20-30.17	29.90	3.87
960504	114159.99	38-2.65	20-49.37	14.20	3.72
960505	3429.62	38-30.37	20-18.88	17.50	3.84
960509	22643.68	38-14.41	21-42.80	17.99	3.10
960518	123228.31	38-10.21	20-20.42	13.21	3.82
960526	214419.17	38-10.00	20-23.51	22.72	4.71
960529	132711.76	38-11.86	20-40.65	12.24	3.68
960530	102634.66	38-52.24	21-37.45	16.63	4.02
960531	2528.16	37-34.94	21-35.18	3.35	3.62
960601	92429.23	38-10.44	20-24.11	17.17	4.19
960601	122716.55	37-36.61	21-45.78	24.67	3.92
960606	162536.20	37-37.16	21-13.44	15.81	4.68
960607	8143.08	37-35.93	21-11.36	28.92	3.63
960611	55156.56	38-17.51	21-41.74	4.59	3.82
960611	12644.13	38-21.20	21-44.83	5.92	3.13
960613	54123.28	37-36.93	21-13.98	17.55	4.45
960614	233617.41	37-37.69	21-10.66	27.99	4.02
960615	1963.77	37-45.15	21-21.88	15.49	3.63
960618	14231.83	38-27.56	21-33.27	17.87	3.58
960620	22045.09	37-43.68	20-54.49	7.30	3.75
960621	8256.70	37-52.54	21-4.91	16.80	3.61
960621	85726.36	37-35.23	21-11.34	18.50	3.70
960621	17153.20	37-39.48	20-46.90	13.43	3.84
960621	173654.11	37-40.85	20-49.61	10.80	3.58
960623	223035.56	38-39.18	21-38.49	12.94	2.55
960624	233937.33	38-15.20	21-39.15	26.83	3.08
960627	135338.73	38-23.76	21-44.10	2.47	3.13
960629	102531.11	37-36.37	21-10.95	26.43	3.77
960629	141629.98	37-35.68	21-10.03	27.70	3.85
960630	45153.52	38-5.16	20-47.40	17.07	4.15
960704	215719.12	38-10.30	20-24.03	25.48	4.58
960704	222515.70	38-11.83	20-21.48	13.01	4.08
960708	233437.50	37-10.02	20-47.11	13.57	4.15
960709	142210.50	37-43.28	20-41.80	0.17	3.91
960710	22537.69	37-39.16	20-46.85	17.13	3.69
960717	1930.97	37-58.77	21-4.18	26.23	3.46
960718	143229.59	37-57.85	20-57.87	17.16	3.70
960719	185340.38	37-52.95	21-7.62	13.10	3.45
960723	71753.25	38-3.68	20-28.56	16.95	3.77

Table 3 continued

Date	Origin	Lat. N	Long. E	Depth	Mag.
960727	$2350 \quad 9.39$	37-36.47	20-44.06	16.32	4.14
960801	03123.88	37-47.52	21-8.74	15.20	3.98
960801	9229.47	37-40.32	21-10.32	17.99	4.04
960804	174114.49	37-36.79	21-11.06	25.73	4.52
960805	51333.90	37-49.36	20-54.00	4.38	3.79
960806	221726.64	37-58.15	21-57.93	13.57	3.69
960806	234552.72	38-22.89	21-46.67	6.26	4.01
960810	152221.24	37-47.17	20-49.61	7.15	3.93
960810	23524.72	37-39.49	20-20.88	9.00	4.21
960811	114344.80	37-41.22	21-25.88	23.71	4.74
960811	124138.68	37-41.15	21-26.18	26.34	4.03
960811	214856.11	38-4.23	21-23.26	22.13	3.23
960811	231246.78	38-4.00	21-22.85	21.19	3.08
960812	02735.53	38-3.79	21-22.72	22.22	3.25
960812	34054.05	38-3.72	21-23.07	19.41	2.89
960813	215119.34	38-9.75	20-20.28	13.22	3.93
960814	9954.00	38-3.82	21-22.97	23.50	3.43
960815	8250.12	38-4.37	21-22.96	22.22	3.45
960815	829.84	38-3.75	21-22.69	23.49	3.56
960815	141623.67	38-4.11	21-22.99	24.85	3.47
960815	143739.30	38-3.87	21-22.39	21.53	3.48
960815	144053.13	38-1.54	21-24.67	19.95	2.81
960815	144658.13	38-3.91	21-22.11	19.45	3.66
960815	145913.02	38-0.82	21-26.25	18.73	3.45
960815	23453.17	38-2.77	21-23.50	21.33	3.11
960815	231638.42	38-22.67	22-0.63	13.84	3.04
960816	191036.63	38-3.91	21-23.20	21.19	3.33
960816	214846.38	38-3.86	21-21.62	24.82	3.05
960816	222852.25	38-4.22	21-22.32	17.40	3.55
960818	134341.60	37-38.13	21-7.82	17.74	3.98
960819	3844.57	37-36.09	21-10.37	23.02	4.15
960819	215555.89	37-36.56	21-8.28	28.08	3.48
960821	2319.34	38-10.97	21-23.27	20.28	2.62
960822	2059.60	38-23.21	21-46.67	13.93	4.22
960823	11196.92	38-23.64	21-44.15	1.06	3.15
960823	214756.61	38-23.33	21-44.67	1.43	2.94
960824	63615.41	38-17.45	21-45.40	7.20	3.29
960824	173245.85	37-52.49	21-9.65	7.34	3.62
960824	232635.07	37-43.21	20-58.49	10.94	3.60
960825	14328.99	38-23.13	21-46.58	11.20	3.09
960825	225323.13	38-5.96	22-0.24	20.18	3.31
960826	16125.04	37-32.89	20-55.02	15.46	4.00
960826	20057.24	38-9.34	21-23.42	16.19	3.59
960827	21345.31	38-46.94	21-14.44	13.54	3.54
960828	12229.45	37-42.09	21-23.40	25.31	4.44
960828	122656.55	37-40.79	21-22.67	24.24	3.66
960831	3485.89	38-23.60	21-45.01	12.15	3.38
960831	92531.87	38-21.61	21-53.60	7.10	3.29
960831	144334.20	37-37.37	21-8.75	15.50	4.28
960831	181317.10	38-14.00	22-1.45	53.77	3.24

Table 3 continued

Date	Origin	Lat. N	Long. E	Depth	Mag.
960831	19130.02	37-40.05	21-9.13	19.67	3.63
960905	14712.62	38-29.30	21-32.46	12.65	3.51
960906	103754.96	38-7.16	21-31.89	16.23	3.36
960909	184938.91	37-45.20	20-37.35	13.64	4.42
960911	185918.53	38-22.68	22-10.90	13.67	3.70
960915	135850.85	37-36.87	21-11.42	16.70	4.08
960915	18591.36	37-37.82	21-11.10	16.80	3.73
960915	215054.12	37-36.92	21-11.94	16.08	3.68
960916	213233.33	38-29.55	21-38.92	10.89	3.03
960918	62514.09	38-8.18	21-56.75	12.41	3.04
960918	13371.68	37-52.33	21-57.19	7.58	3.90
960920	20187.55	38-16.90	21-47.42	5.21	2.94
960921	162930.61	38-37.83	21-6.87	19.00	2.85
960922	14526.90	38-37.68	21-7.39	17.34	3.12
960930	03817.74	38-10.50	20-43.15	19.25	3.70
961001	101655.34	38-21.20	21-43.35	8.66	3.70
961001	203927.93	37-55.78	21-0.88	17.68	3.35
961003	10727.29	38-6.70	20-45.83	4.51	3.49
961008	174654.72	38-25.56	22-8.99	18.71	3.34
961009	787.84	38-7.75	21-39.59	19.38	3.46
961009	112742.78	37-54.95	21-1.87	15.82	2.94
961010	203135.75	37-51.15	21-13.82	10.23	3.15
961011	21024.45	38-4.96	20-47.40	10.68	3.24
961011	11046.08	38-4.72	20-48.40	10.92	3.66
961012	31126.25	38-48.29	21-17.82	33.14	2.80
961012	22236.69	37-54.87	21-47.88	28.74	3.29
961013	45149.63	38-8.37	21-38.34	16.41	2.79
961013	948.12	38-23.10	21-48.02	14.59	3.28
961016	104833.85	37-39.29	22-42.37	5.89	3.93
961016	11251.40	37-51.92	21-6.59	17.35	3.25
961018	72058.85	38-27.76	21-46.39	12.49	2.79
961018	181910.86	37-45.66	22-12.34	16.40	3.34
961022	10164.85	37-42.99	21-21.24	27.39	3.52
961023	105517.16	38-11.79	21-48.37	4.32	2.73
961023	12739.97	37-12.21	20-47.34	18.11	4.17
961023	143240.73	37-56.50	21-28.51	24.02	3.08
961023	145928.70	37-41.52	20-43.93	17.85	3.95
961028	225159.73	37-48.94	21-9.65	22.12	3.59
961028	231727.29	37-49.07	21-9.06	25.01	4.02
961101	1546.32	37-54.99	21-9.18	12.33	3.35
961102	18410.33	38-25.02	21-53.84	7.52	3.12
961105	13331.12	38-47.67	20-31.00	24.55	3.32
961107	4459.29	37-44.60	21-1.91	28.01	3.17
961107	225411.67	38-23.35	22-1.08	10.63	3.14
961108	91124.77	38-27.87	21-59.64	17.95	3.25
961110	61949.19	38-2.46	21-20.65	13.35	4.11
961110	111827.31	37-52.39	21-5.29	16.08	3.16
961113	93137.33	37-39.66	20-21.66	8.83	4.54
961113	11659.95	37-28.79	20-14.20	4.51	4.05
961115	63956.34	38-18.54	22-6.36	4.64	3.38
961115	132146.76	37-47.94	21-11.41	16.22	3.47
961116	173818.23	38-21.10	22-2.61	8.79	3.75

Table 3 continued

Date	Origin		Lat. N	Long. E	Depth	Mag.
961120	1927	35.17	$38-4.67$	$22-1.28$	3.52	3.15
961125	1747	51.64	$37-25.07$	$21-41.91$	14.35	3.26
961127	241	9.70	$38-6.47$	$21-30.45$	24.22	2.89
961201	49	44.48	$38-16.48$	$22-4.03$	1.55	2.94
961201	613	45.01	$38-19.61$	$21-36.60$	22.83	2.98
961205	740	26.30	$38-21.84$	$21-43.41$	5.68	4.02
961208	2325	9.46	$37-51.06$	$21-25.39$	60.69	2.86
961214	759	8.79	$38-10.27$	$21-54.79$	2.08	3.03
961216	8	43.48	$38-21.04$	$21-5.25$	30.67	2.96
961216	16	53.80	$38-20.72$	$21-9.88$	33.40	3.67
961216	1620	50.65	$38-20.82$	$21-6.13$	26.99	2.86
961217	1324	47.02	$38-56.96$	$22-1.89$	86.39	3.53
961226	147	1.79	$38-29.27$	$21-56.39$	17.45	3.47
961226	2123	52.68	$38-54.48$	$21-56.22$	15.36	3.43
961227	2133	36.02	$37-53.32$	$20-56.89$	27.00	4.22
961228	1149	27.01	$38-50.35$	$20-33.76$	20.81	3.70
961228	2338	24.34	$38-52.21$	$21-48.50$	5.23	3.37

3) velocity model parameterization. This is achieved by assigning velocity values at fixed points on a 3-D grid. A continuous velocity field is assumed by linearly interpolating between the specified grid points for velocity values along the ray paths and for velocity partial derivatives. This produces a solution with gradational changes in velocity rather than imposing sharp discontinuities by using block models. Thus, contouring of the final solution enables identification of 3-D velocity structures.

The program iterates to find a damped least-squares solution using singular value decomposition. A damping parameter, defined by the user, is added to the diagonal elements of the separated medium matrix in order to prevent large model changes which would occur for near zero singular values. If the damping parameter is too small the velocity values oscillate from one grid point to another, causing large changes in velocity to occur without a corresponding reduction in the data variance. The idea is to reduce the data variance without increasing the solution variance significantly (i.e., to reduce the travel-time residual variance without introducing large velocity variations). Traditionally, the damping parameter is chosen to equal the ratio of the data variance to the model variance (Eberhart-Phillips, 1989). In this study, empirical testing of damping parameters was also performed, by running inversions with different damping values. Hence, the value of 25 for P-wave data was selected. Convergence to a solution is checked by calculating the ratio of the previous data variance to the new data variance after each iteration.

A $95 \% F$-test is applied in the usual manner to decide if the new result is significant. The F-test is a test of the significance of the error improvement, that is whether the improvement is too large to be accounted for by random fluctuations
in the data and is therefore significant (Menke, 1984). This study required four iterations to converge to a solution.

4. P-Wave Tomography Study in Western Greece

(a) Event Selection

The PATNET data set of events which occurred in 1996 was first selected from the entire set of 2,500 events that occurred in 1991-1996. 538 events were included in the resultant 1996 data set and their epicentral distribution is shown in Figure 2. For the present study a smaller subset of 168 events was selected on the basis of the following critera:

1) the quality of the P-arrival time picking. Only the events with at least ten observations of zero weight were selected.
2) the total RMS travel-time residual. For each selected event this was less than 0.20 s .

Figure 4
Epicentral distribution of the 168 selected events for inversion. The area selected for inversion is noted with the box. Cross-sections contoured and presented in Figures 8-9 are shown with solid lines and numbers.

Figure 6
Histogram showing depth distribution of the 168 events selected for inversion.
3) the uncertainty in the epicenter and focal depth. The locations for the events selected were allowed an error less than 4 km on both epicenters and focal depth determinations.
4) the spatial distribution of the epicenters of selected events. Special care was taken to aim for a distribution of the most evenly possible epicenters of events throughout the study area.

168 events were found that met the above criteria. Their hypocentral details and local magnitudes are given in Table 3 and their epicentral distribution is shown in Figure 4.

(b) Velocity Model Used

The initial velocity model used in the present inversion study was adopted from the 1-D model which is used routinely in PATNET and is presented in Table 2. A grid was defined with origin the point with coordinates: latitude $37^{\circ} 20^{\prime} \mathrm{N}$, longitude $20^{\circ} 20^{\prime} \mathrm{E}$. This was the $(0,0)$ point of the defined grid with dimensions $125 \times 125 \mathrm{~km}$ (Fig. 4). The grid nodes were not evenly spaced at x and y axes, but were defined for x at: $5,35,65,95$ and 125 km and for y at: $5,35,55,75,95,125 \mathrm{~km}$

P-wave velocity contour diagrams for: (a) layer at 1 km , (b) layer at 5 km , (c) layer at 18 km depth, respectively.

Figure 7 (continued).

Figure 8
P-wave velocity contour diagrams for cross-sections $2-5$ shown in Figure 4.
respectively. Four layers of these grid points at 1, 5, 18 and 39 km depth were defined according to the 1-D model in Table 2 and were assigned P-wave velocities, respectively. Thus a volume of $125 \times 125 \times 38 \mathrm{~km}^{3}$ was defined in the area of western Greece.

(c) Resolution

A resolution matrix is produced at the end of the inversion procedure which indicates how well the velocity is constrained at each grid node, as it is correlated to the number of rays passing at each grid node (ThURBER, 1983). Figure 5 presents for each grid layer, contours of the number of rays passing at each grid node. It can be seen that only for layer 4, at 39 km depth the coverage is not sufficient. This is due to the focal depth coverage of events used in the present inversion study, which as it is shown in the histogram of Figure 6 corresponds to depths shallower than 20 km . Thus, the resolution should also increase at depths shallower than 20 km . In general for the present study the resolution values for the P-wave velocity model were in the range of 0.0 to 0.62 with an average of 0.24 . It is observed here as is also shown in Figure 5 that the resolution is poor at depths greater than 20 km and at the western and southern parts of the layer at 18 km .

(d) Resulting P-wave Velocity Model

The resulting values for each layer were contoured using a grid spacing of 2.5 km in both the x and y directions (Figs. 7a-c). Cross-sections were also selected as illustrated in Figure 4 and they were also contoured using a grid spacing of 2.5 km at the x and z directions (Fig. 8). Finally, a cross-section, noted as 1 in Figure 4 was also selected and the resulting contours are shown in Figure 9.

Viewing Figures $7-9$, a well-defined localized anomaly of low P-wave velocity can be observed at the Cephallonia-Zakynthos-NW Peloponnesos area. This coincides with intrusions of local diapirs which were observed by Brooks and Ferentinos (1984) and also presented by Underhill (1988). The evaporitic outcrop in the area is shown in Figure 10 (from Underhill, 1988 and after Brooks and Ferentinos, 1984). The line of seismic section and its interpretation are shown in Figure 10 and it runs obliquely through sections 1, 4 and 5 (Figs. 8, 9) where the localized relatively low P-velocity contours can be seen.

It is also interesting to emphasize the appearance of a low P-wave velocity "deeping" zone which is developed towards the Gulf of Patras (Figs. 7a, b, 8 and 9). There, offshore drilling by the Public Petroleum Corporation of Greece proved that thick sediments of 1800 m overlie the Triassic evaporites (Ferentinos et al., 1985; Brooks et al., 1988). The later have also been found

Figure 9
P-wave velocity contour diagram for cross-section 1 shown in Figure 4. Note the low P-wave velocity zone 'deeping' towards the Gulf of Patras.

Figure 10
(a) Single channel air-gun record across Zakynthos and Cephallonia Basins. (b) and (c) location and interpretation respectively emphasizing the Triassic evaporite diapirs (from Underhill, 1988 and after Brooks and Ferentinos, 1984).
in onshore drilling at depths of about 2500 m (BP Co. Ltd., 1971) North of the Gulf of Patras. Thus the combination of evaporites and thick sediments towards the Gulf of Patras define a thicker low-velocity layer.

5. Conclusions

The present investigation of P-wave velocity in the area of western Greece demonstrates the importance of 3-D-inversion studies in areas of high seismic activity. An estimate of the locations of relatively low velocity areas in the region is also given. The existence of these relatively low velocity rocks provides important input that is necessary to achieve accurate earthquake locations. A future extended study, using a larger number of events, will be extremely useful for improving earthquake locations in the region. Existing off-shore seismic profiles only provide information for shallower depths, nonetheless these are useful for modeling shallow structures (i.e., evaporitic intrusions which are also outcrop in the area). Lastly, borehole information (BP Co. Ltd., 1971) and gravity data (Brooks et al., 1988) can also be utilized in order to correlate a more detailed model which can be produced for the studied area.

Acknowledgments

We are grateful to Drs. P. Maguire and P. W. Burton for their continuous encouragement during this study. Professor B. J. Mitchell and an anonymous reviewer provided useful suggestions for improving the presentation of this work.

References

Anderson, H. (1987), Is the Adriatic an African Promontory? Geology 15, 212-215.
Anderson, H., and Jackson, J. (1987), The Deep Seismicity of the Tyrrhenian Sea, Geophys. J. R. astr. Soc. 91, 613-637.
British Petroleum Company Ltd. (BP Co. Ltd.) (1971), The Geological Results of Petroleum Exploration in Western Greece, Spec. Rep. Inst. Geol. Geophys. Res. Athens, 10, 73 pp.
Brooks, M., and Ferentinos, G. (1984), Tectonics and Sedimentation in the Gulf of Corinth and the Zakynthos and Kefallinia Channels, Western Greece, Tectonophysics 101, 25-54.
Brooks, M., Clews, J., Melis, N. S., and Underhill, J. (1988), Structural Development of Neogene Basins in Western Greece, Basin Research 1, 129-138.
Chronis, G., Piper, D. J. W., and Anagnostou, C. (1991), Late Quaternary Evolution of the Gulf of Patras, Greece: Tectonism, Deltaic Sedimentation and Sea-level Change, Mar. Geol. 97, 181-209.
Eberhart-Phillips, D. (1989), Investigations of Crustal Structure and Active Tectonic Processes in the Coast Ranges, Central California, Ph.D. Thesis, Stanford University, California.
Eberhart-Phillips, D. (1990), Three-dimensional P- and S-velocity Structure in the Coalinga Region California, J. Geophys. Res. 95, 15343-15363.

Ferentinos, G., Brooks, M., and Doutsos, T. (1985), Quaternary Tectonics in the Gulf of Patras, Western Greece, J. Struct. Geol. 7, 713-717.
Finneti, I. (1976), Mediterranean Ridge, A Young Submerged Chain Associated with the Hellenic Arc, Boll. Geofis. Teor. Applic. 15, 263-341.
Finneti, I. (1982), Structure, Stratigraphy and Evolution of the Central Mediterranean Sea, Boll. Geofis. Teor. Applic. 24, 247-312.
Hatzfeld, D., Kassaras, I., Panagiotopoulos, D., Amorese, D., Makropoulos, K., Karakaisis, G., and Coutant, O. (1995), Microseismicity and Strain Pattern in Northwestern Greece, Tectonics 14, 773-785.
Hatzfeld, D., Pedotti, G., Hatzidimitriou, P., and Makropoulos, K. (1990), The Strain Pattern in the Western Hellenic Arc Deduced from a Microearthquake Survey, Geophys. J. Int. 101, 181-202.
Kiratzi, A. A., and Papazachos, B. C. (1985), Local Richter Magnitude and Total Signal Duration in Greece, Annal. Geophys. 3, 531-538.
Lee, W. H. K., Bennet, R. E., and Meagher, K. L. (1972), A Method of Estimating Magnitude of Local Earthquakes from Signal Duration, U. S. Geological Survey, Open File Report 1-28.
Lee, W. H. K., and Lahr, J. C. (1975), HYPO71 (Revised): A Computer Program for Determining Hypocentre, Magnitude, and First Motion Pattern of Local Earthquakes, U.S. Geological Survey, Open File Report 75-311.
Lee, W. H. K., and Valdes, C. M. (1985), HYPO71PC: A Personal Computer Version of the HYPO71 Earthquake Location Program, U.S. Geological Survey, Open File Report 85-749.
Le Pichon, X., and Angelier, J. (1979), The Hellenic Arc and Trench System: A Key to the Neotectonic Evolution of the Eastern Mediterranean Area, Tectonophysics 60, 1-42.
Le Pichon, X., and Angelier, J. (1981), The Aegean Sea, R. Soc. Lond. Phil. Trans. A300, 357-372.
McKenzie, D. P. (1972), Active Tectonics of the Mediterranean Region, Geophys. J. R. Astr. Soc. 30, 109-185.
McKenzie, D. P. (1978), Active Tectonics of the Alpine-Himalayan Belt: The Aegean Sea and Surrounding Regions, Geophys. J. R. Astr. Soc. 55, 217-254.
Melis, N. S., Brooks, M., and Pearce, R. G. (1989), A Microearthquake Network in the Gulf of Patras Region, Western Greece, and its Seismotectonic Interpretation, Geophys. J. R. Astr. Soc. 98, 515-524.
Melis, N. S., Burton, P. W., and Brooks, M. (1995), Coseismic Crustal Deformation from Microseismicity in the Patras Area, Geophys. J. Int. 122, 815-836.
Menke, W., Geophysical Data Analysis: Discrete Inverse Theory (Academic Press Inc., New York 1984).

Mercier, J.-L., Sorel, D., and Simeakis, K. (1987), Changes in the State of Stress in the Overriding Plate of a Subduction Zone: The Aegean Arc from the Pliocene to the Present, Annal. Tecton. 1, 20-39.
Mercier, J.-L., Carey, E., Philip, H., and Sorel, D. (1976), La Neotectonique Plio-Quaternaire de l'Arc Egeen Externe et de la Mer Egee et ses Relations avec Seismicite, Bull. Soc. Geol. Fr. 18, 159-176.
Mercier, J.-L., Bousquet, B., Delibasis, N., Drakopoulos, I., Keraudren, B., Lemeille, F., and Sorel, D. (1972), Deformations en Compression dans le Quaternaire des Rivages Ioniennes (Cephalonie, Greece), Donnees Neotectoniques et Seismiques, Academie de Sciences Comptes Rendus 275, 2307-2310.
Pavlis, G. L., and Brooker, J. R. (1980), The Mixed Discrete-Continuous Inverse Problem: Application to the Simultaneous Determination of Earthquake Hypocentres and Velocity Structure, J. Geophys. Res. 88, 4801-4810.
Thurber, C. H. (1981), Earthquake Structure and Earthquake Locations in the Coyote Lake Area, Central California, Ph.D. Thesis, Mass. Inst. of Technol., Cambridge, U.S.A.
Thurber, C. H. (1983), Earthquake Locations and Three-dimensional Crustal Structure in the Coyote Lake Area, Central California, J. Geophys. Res. 88, 8226-8236.

Tselentis, G.-A., Melis, N. S., and Sokos, E. (1994), The Patras (July 14, 1993; $M_{s}=5.4$) Earthquake Sequence, presented at the 7th Congress of the Geol. Soc. of Greece, Thessaloniki, May 25-27.
Tselentis, G.-A., Xanalatos, N., and Melis, N. S. (1994), SISMWIN: A Computer Program for Seismological Dataphase Picking and Processing, Report C2, Patras Seismological Centre, 76 pp.
Underhill, J. R. (1988), Triassic Evaporites and Plio-Quaternary Diapirism in Western Greece, J. Geol. Soc. London 145, 269-282.
Underhill, J. R. (1989), Late Cenozoic Deformation of the Hellenide Foreland, Western Greece, Bull. Geol. Soc. Am. 101, 613-634.

[^0]: ${ }^{1}$ Seismology Laboratory, University of Patras, Rio 261 10, Greece.
 ${ }^{2}$ Earthquake Planning and Protection Organization, Xanthou 32, 15451 Athens, Greece.

